Major Factors in HVAC Design

Outdoor Design Conditions

The outdoor design conditions at a proposed building site are very important in design of heating and cooling systems. Of major importance are the dry-bulb temperature,  humidity conditions, and prevailing winds.
Outside conditions assumed for design purposes affect the heating and cooling plants physical size, capacity, electrical requirements, and of considerable importance, the estimated cost of the HVAC installation. The reason for this is that in many cases, the differences between indoor and outdoor conditions have a great influence on calculated heating and cooling loads, which determine the required heating and cooling equipment capacities. Since in most cases the design outdoor air temperatures are assumed, the size of equipment will be greatly affected by assumed values.
Extreme outside air conditions are rarely used to determine the size of heating and cooling equipment, since these extreme conditions may occur, in summer or winter, only once in 10 to 50 years. If these extreme conditions were used for equipment selection, the results would be greatly oversized heating and cooling plants and a much greater installed cost than necessary. Furthermore, such oversized equipment will operate most of the year at part load and with frequent cycling of the machines. This results in inefficient operation and, generally, consumption of additional power, because most machines operate at maximum efficiency at full load.

On the other hand, when heating or cooling equipment is properly sized for more frequently occurring outdoor conditions, the plants will operate with less cycling and greater efficiency. During the few hours per year when outside conditions exceed those used for design, the equipment will run continuously in an attempt to maintain the intended interior design conditions. If such conditions persist for a long time, there will probably be a change in interior conditions from design conditions that may or may not be of a minor extent and that may produce uncomfortable conditions for the occupants.
Equipment should be selected with a total capacity that includes a safety factor to cover other types of operation than under steady-state conditions. In the midwest,  for instance, the outdoor air temperature may fall as much as 45F in 2 hr. The heating capacity of a boiler in this case would have to be substantially larger than that required for the calculated heat loss alone. As another example, many heating and cooling systems are controlled automatically by temperature control systems that, at a predetermined time, automatically reset the building temperature downward to maintain, say, 60F at night for heating. At a predetermined time, for example, 7:30 a.m., before arrival of occupants, the control system instructs the boiler to bring the building up to its design temperature for occupancy. Under these conditions, the boiler must have the additional capacity to comply in a reasonable period of time before the arrival of the occupants.

Accordingly, design outdoor conditions should be selected in accordance with  the manner in which the building will be used and, just as important, to obtain reasonable initial cost and low operational costs. Outdoor design conditions for a few cities are shown in Tables 13.4 and 13.5. Much more detailed data are presented in the ASHRAE Handbook Fundamentals.
The use of outdoor design conditions does not yield accurate estimates of fuel requirements or operating costs, because of the considerable variations of outdoor air temperature seasonally, monthly, daily, and even hourly. These wide variations must be taken into account in attempts to forecast the operating costs of a heating or cooling system.
Since most equipment capacities are selected for calculated loads based on steady-state conditions, usually these conditions will not provide acceptable estimates of annual operating costs. (Wide fluctuations in outside temperatures, however, may not always cause a rapid change in inside conditions as outdoor temperatures rise and fall. For example, in buildings with massive walls and roofs and
small windows, indoor temperatures respond slowly to outdoor changes.) Hence, forecasts of fuel requirements or operating costs should be based on the average temperature difference between inside and outside air temperatures on an hourly basis for the entire year. Such calculations are extremely laborious and are almost always performed by a computer that utilizes an appropriate program and local weather tapes for the city involved. Many such programs are currently available from various sources.

Scroll to Top