Rubber for construction purposes is both natural and synthetic. Natural rubber, often called crude rubber in its unvulcanized form, is composed of large complex molecules of isoprene. Synthetic rubbers, also known as elastomers, are generally rubber-like only in their high elasticity. The principal synthetic rubbers are the following:
GR-S is the one most nearly like crude rubber and is the product of styrene and butadiene copolymerization. It is the most widely used of the synthetic rubbers. It is not oil-resistant but is widely used for tires and similar applications.
Nitril is a copolymer of acrylonitrile and butadiene. Its excellent resistance to oils and solvents makes it useful for fuel and solvent hoses, hydraulic-equipment parts, and similar applications.
Butyl is made by the copolymerization of isobutylene with a small proportion of isoprene or butadiene. It has the lowest gas permeability of all the rubbers and consequently is widely used for making inner tubes for tires and other applications in which gases must be held with a minimum of diffusion. It is used for gaskets in buildings.
Neoprene is made by the polymerization of chloroprene. It has very good mechanical properties and is particularly resistant to sunlight, heat, aging, and oil; it is therefore used for making machine belts, gaskets, oil hose, insulation on wire cable, and other applications to be used for outdoor exposure, such as roofing, and gaskets for building and glazing.
Sulfide rubbers the polysulfides of high molecular weight have rubbery properties, and articles made from them, such as hose and tank linings and glazing compounds, exhibit good resistance to solvents, oils, ozone, low temperature, and outdoor exposure.
Silicone rubber, which also is discussed in Art. 4.71, when made in rubbery consistency forms a material exhibiting exceptional inertness and temperature resistance. It is therefore used in making gaskets, electrical insulation, and similar products that maintain their properties at both high and low temperatures.
Additional elastomers include polyethylene, cyclized rubber, plasticized polyvinyl chloride, and polybutene. A great variety of materials enters into various rubber compounds and therefore provide a wide range of properties. In addition, many elastomeric products are laminated structures of rubber-like compounds combined with materials like fabric and metals (Art. 4.76).