Effects of Hot Rolling

While plates and shapes for construction applications can be obtained from processes other than casting and rolling of ingots, such as continuous casting, most plates and shapes are made by hot-rolling ingots (Art. 4.46). But usually, the final products are not rolled directly from ingots. First, the ingots are generally reduced in cross section by rolling into billets, slabs, and blooms. These forms permit correction of defects before finish rolling, shearing into convenient lengths for final rolling, reheating for further rolling, and transfer to other mills, if desired, for that processing.
Plates produced from slabs or directly from ingots, are distinguished from sheet, strip, and flat bars by size limitations in ASTM A6. Generally, plates are heavier, per linear foot, than these other products. Sheared plates, or sheared mill plates, are made with straight horizontal rolls and later trimmed on all edges. Universal plates, or universal mill plates, are formed between vertical and horizontal rolls and are trimmed on the ends only.
Some of the plates may be heat-treated, depending on grade of steel and intended use. For carbon steel, the treatment may be annealing, normalizing, or stress relieving.
Plates of high-strength, low-alloy constructional steels may be quenched and tempered. See Art. 4.42.
Shapes are rolled from blooms that first are reheated to 2250F. Rolls gradually reduce the plastic blooms to the desired shapes and sizes. The shapes then are cut to length for convenient handling with a hot saw.
ASTM A6 requires that material for delivery shall be free from injurious defects and shall have a workmanlike finish. The specification permits manufacturers to condition plates and shapes for the removal of injurious surface imperfections or surface depressions by grinding, or chipping and grinding. . . .
Internal structure and many properties of plates and shapes are determined largely by the chemistry of the steel, rolling practice, cooling conditions after rolling, and heat treatment, where used. The interior of ingots consists of large crystals, called dendrites, characterized by a branching structure. Growth of individual dendrites occurs principally along their longitudinal axes perpendicular to the ingot surfaces. Heating for rolling tends to eliminate dendritic segregation, so that the  rolled products are more homogeneous than ingots. Furthermore, during rolling, the dendritic structure is broken up. Also, recrystallization occurs. The final austenitic grain size is determined by the temperature of the steel during the last passes through the rolls (Art. 4.43). In addition, dendrites and inclusions are reoriented in the direction of rolling. As a result, ductility and bendability are much better in the longitudinal direction than in the transverse, and these properties are poorest in the thickness direction. The cooling rate after rolling determines the distribution of ferrite and the grain size of the ferrite.

In addition to the preceding effects, rolling also may induce residual stresses in plates and shapes (Art. 4.41.1). Still other effects are a consequence of the final thickness of the hot-rolled material.
Thicker material requires less rolling, the finish rolling temperature is higher, and the cooling rate is slower than for thin material. As a consequence, thin material has a superior microstructure. Furthermore, thicker material can have a more unfavorable state of stress because of stress raisers, such as tiny cracks and inclusions, and residual stresses. Consequently, thin material develops higher tensile and yield strengths than thick material of the same steel. ASTM specifications for structural steels recognize this usually by setting lower yield points for thicker material. A36 steel, however, has the same yield point for all thicknesses. To achieve this, the chemistry is varied for plates and shapes and for thin and thick plates. Thicker plates contain more carbon and manganese to raise the yield point. This cannot be done for high-strength steels because of the adverse effect on notch toughness, ductility, and weldability.
Thin material has greater ductility than thick material of the same steel. Since normalizing refines the grain structure, thick material improves relatively more with normalizing than does thin material. The improvement is even greater with siliconaluminum- killed steels.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top