Materials under this heading in general can be softened by heating and hardened by cooling.
Acrylics. In the form of large transparent sheets, these are used in aircraft enclosures and building construction. Although not so hard as glass, they have perfect clarity and transparency. Among the most resistant of the transparent plastics to sunlight and outdoor weathering, they possess an optimum combination of flexibility and sufficient rigidity with resistance to shattering. A wide variety of transparent, translucent, and opaque colors can be produced. The sheets are readily formed to complex shapes. They are used for such applications as transparent windows, outdoor and indoor signs, parts of lighting equipment, decorative and functional automotive parts, reflectors, household-appliance parts, and similar applications.
They can be used as large sheets, molded from molding powders, or cast from the liquid monomer.
Acrylonitrile-Butadiene-Styrene (ABS). This three-way copolymer provides a family of tough, hard, chemically resistant resins with many grades and varieties, depending on variations in constituents. The greatest use is for pipes and fittings, especially drain-waste-vent (DWV). Other uses include buried sewer and water lines, mine pipe, well casings, conduit, and appliance housings.
Polyethylene. In its unmodified form, this is a flexible, waxy, translucent plastic.
It maintain flexibility at very low temperatures, in contrast with many other thermoplastic materials.
Polyethylene may be provided as low-density, or standard, or as high-density or linear material. High-density polyethylene has greater strength and stiffness, withstands somewhat higher temperatures, and has a more sharply defined softening temperature range. The heat-distortion point of the low-density polyethylenes is low; these plastics are not recommended for uses above 150F. Unlike most plastics, polyethylene is partly crystalline. It is highly inert to solvents and corrosive chemicals of all kinds at ordinary temperatures. Usually low moisture permeability and absorption are combined with excellent electrical properties. Its density is lower than that of any other commercially available nonporous plastic. It is widely used as a primary insulating material on wire and cable and has been used as a replacement for the lead jacket in communication cables and other cables. It is widely used also in geogrids, geonets, and geomembranes (Art. 6.11) and as corrosionproof lining for tanks and other chemical equipment.
Polypropylene. This polyolefin is similar in many ways to its counterpart, polyethylene, but is generally harder, stronger, and more temperature-resistant. It finds a great many uses, among them piping, geotextiles, and geogrids (Art. 6.11), and complete water cisterns for water closets in plumbing systems.
Polycarbonate. Excellent transparency, high impact resistance, and good resistance to weathering combine to recommend this plastic for safety glazing and for general illumination and shatter-resistant fixtures. It is available in large, clear, tinted, and opaque sheets that can be formed into shells, domes, globes, and other forms. It can be processed by standard molding methods.
Polytetrafluorethylene. This is a highly crystalline liner-type polymer, unique among organic compounds in its chemical inertness and resistance to change at high and low temperatures. Its electrical properties are excellent. Its outstanding property is extreme resistance to attack by corrosive agents and solvents of all kinds.
Waxy and self-lubricating, polytetrafluoroethylene is used in buildings where resistance to extreme conditions or low friction is desired. In steam lines, for example, supporting pads of this plastic permit the lines to slide easily over the pads. The temperatures involved have little or no effect. Other low-friction applications include, for example, bearings for girders and trusses. Mechanical properties are only moderately high, and reinforcement may be necessary to prevent creep and squeezeout under heavy loads. These fluorocarbons are difficult to wet; consequently, they are often used as parting agents, or where sticky materials must be handled.
Polyvinylfluoride. This has much of the superior inertness to chemical and weathering attack typical of the fluorocarbons. Among other uses, it is used as thin-film overlays for building boards to be exposed outdoors.
Polyvinyl Formal and Polyvinyl Butyral. Polyvinyl formal resins are principally used as a base for tough, water-resistant insulating enamel for electric wire. Polyvinyl butyral is the tough interlayer in safety glass. In its cross-linked and plasticized form, polyvinyl butyral is extensively used in coating fabrics for raincoats, upholstery, and other heavy-duty moisture-resistant applications.
Vinyl Chloride Polymers and Copolymers. Polyvinyl chloride is naturally hard and rigid but can be plasticized to any required degree of flexibility as in raincoats and shower curtains. Copolymers, including vinyl chloride plus vinyl acetate, are naturally flexible without plasticizers. Nonrigid vinyl plastics are widely used as insulation and jacketing for electric wire and cable because of their electrical properties and their resistance to oil and water. Thin films are used in geomembranes (Art. 6.11). Vinyl chlorides also are used for floor coverings in the form of tile and sheet because of their abrasion resistance and relatively low water absorption. The rigid materials are used for tubing, pipe, and many other applications where their resistance to corrosion and action of many chemicals, especially acids and alkalies, recommends them. They are attacked by a variety of organic solvents, however.
Like all thermoplastics, they soften at elevated temperatures.
Vinylidene Chloride. This material is highly resistant to most inorganic chemicals and to organic solvents generally. It is impervious to water on prolonged immersion, and its films are highly resistant to moisture-vapor transmission. It can be sterilized, if not under load, in boiling water. It is used as pipe for transporting chemicals and geomembranes (Art. 6.11).
Nylon. Molded nylon is used in increasing quantities for impact and high resistance to abrasion. It is employed in small gears, cams, and other machine parts, because even when unlubricated they are highly resistant to wear. Its chemical resistance, except to phenols and mineral acids, is excellent. Extruded nylon is coated onto electric wire, cable, and rope for abrasion resistance. Applications like hammerheads indicate its impact resistance.
Polystyrene. This is one of the lightest of the presently available commercial plastics. It is relatively inexpensive, easily molded, has good dimensional stability, and good stability at low temperatures; it is brilliantly clear when transparent and has an infinite range of colors. Water absorption is negligible even after long immersion.
Electrical characteristics are excellent. It is resistant to most corrosive chemicals, such as acids, and to a variety of organic solvents, although it is attacked by others. Polystyrenes as a class are considerably more brittle and less extensible than many other thermoplastic materials, but these properties are markedly improved in copolymers. Under some conditions, they have a tendency to develop fine cracks, known as craze marks, on exposure, particularly outdoors. This is true of many other thermoplastics, especially when highly stressed. It is widely used in synthetic rubbers.