The interior of columns is usually congested; it contains a large volume of reinforcing steel compared with the volume of concrete, and has a large height com pared with its cross-sectional dimensions. Therefore, though columns should be continuously cast, the concrete should be placed in 2- to 4-ft-deep increments and consolidated with internal vibrators. These should be lifted after each increment has been vibrated. If delay occurs in concrete supply before a column has been completed, every effort should be made to avoid a cold joint. When the remainder of the column is cast, the first increment should be small, and should be vibrated to penetrate the previous portion slightly.
In all columns and reinforced narrow walls, concrete placing should begin with 2 to 4 in of grout. Otherwise, loose stone will collect at the bottom, resulting in the formation of honeycomb. This grout should be proportioned for about the same slump as the concrete or slightly more, but at the same or lower water-cementitious material ratio. (Some engineers prefer to start vertical placement with a mix having the same proportions of water, cement, and fine aggregate, but with one-half the quantity of coarse aggregate, as in the design mix, and to place a starting layer 6 to 12 in deep.)
When concrete is placed for walls, the only practicable means to avoid segregation is to place no more than a 24-in layer in one pass. Each layer should be vibrated separately and kept nearly level.
For walls deeper than 4 ft, concrete should be placed through vertical, flexible trunks or chutes located about 8 ft apart. The trunks may be flexible or rigid, and come in sections so that they can be lifted as the level of concrete in place rises.
The concrete should not fall free, from the end of the trunk, more than 4 ft or segregation will occur, with the coarse aggregate ricocheting off the forms to lodge on one side. Successive layers after the initial layer should be penetrated by internal vibrators for a depth of about 4 to 6 in to ensure complete integration at the surface of each layer. Deeper penetration can be beneficial (revibration), but control under variable jobsite conditions is too uncertain for recommendation of this practice for general use.
The results of poor placement in walls are frequently observed: sloping layer lines; honeycombs, leaking, if water is present; and, if cores are taken at successive heights, up to a 50% reduction in strength from bottom to top. Some precautions necessary to avoid these ill effects are:
Place concrete in level layers through closely spaced trunks or chutes.
Do not place concrete full depth at each placing point.
Do not move concrete laterally with vibrators.
For deep, long walls, reduce the slump for upper layers 2 to 3 in below the slump for the starting layer.
On any delay between placing of layers, vibrate the concrete thoroughly at the interface.
If concreting must be suspended between planned horizontal construction joints, level off the layer cast, remove any laitance and excess water, and make a straight, level construction joint, if possible, with a small cleat attached to the form on the exposed face (see also Art. 9.39).