The Figure 6 shows the damage distribution for the mosques and minarets surveyed. Damage distribution for RC mosques and minarets are presented in Figures 6c and 6d separately.
Comparison of Figures 6a and 6c indicates that the damage in RC mosques was less as compared to other structural systems. More than ten percent of the mosques surveyed collapsed. Three of the 26 mosques surveyed in Duzce and Kaynasli region collapsed. There was no collapsed mosque in Bolu, but five of the 21 mosques surveyed had to be closed after the October 12, 1999 earthquake. Closed Mosques in Bolu were Semsi Ahmet Pasa (Imaret), Yildirim Bayezid, Kadi, Camli and Yesil. Note that the first three of these mosques are at least 200 years old.
As illustrated in Figures 6b and 6d, percentage of all damaged minarets and only RC minarets are similar. Almost forty percent of the minarets collapsed, and approximately one third of the minarets were undamaged. Failure plane for almost all collapsed RC minarets was within 1.5 meter long region above the minaret base or pyramid-shaped transition segment (Figure 7a), where the longitudinal reinforcing bars were usually spliced.
Horizontal circumferential cracks and spalling of concrete were commonly observed at the bottom of the cylindrical body of RC minarets (Figure 7a). Frequently, flexural cracks, concrete crushing or spalling was observed in this region of the damaged RC minarets. As shown in Figure 7, less frequently collapse or damage occurred within the transition segment and middle of the cylindrical body or near the top of the minaret.
The ratio of collapsed or damaged unreinforced solid brick or stone masonry minarets was much larger than that of RC minarets. As listed in Table 4, majority of the visited masonry minarets collapsed (Sezen et al. 2003, and Firat 1999). Note that most of these minarets were either very new or few hundred years old (Tables 2 and 3). A minaret may either have an independent foundation (referred to as Type I minaret hereafter) or the base of the minaret may be attached to the roof of the mosque (referred to as Type II minaret). The minarets in Figures 2 and 7 are Type I and II minarets, respectively. In Type II minarets, the minaret and mosque structure respond independently. Large deformatiosn or failure in one structure does not affect the other one.
Lateral laod resisting mechanism of minarets are quite different from that of other structures. The height of center of minarets mass can be very high above ground, resulting in large bending moments and shear forces. Masonry minarets without reinforcement or clamps (Figures 3 and 4) and with weak mortat are the most vulnerable against earthquakes.
Masonry minarets typically either collapsed or suffered minor or no damage. This suggests that these minarets had no ductility or very limited deformation capacity. If the demand due to lateral earthquake forces is less than minarets ultimate strength, minaret behaves elastically and suffers no damage. However, as soon as lateral demand exceeds the elastic capacity, the minaret collapses. Unlike RC minarets, masonry minarets failed at different locations along the height of the minaret inconsistently (Figure 8). The Imaret and Kadi mosques and possibly their minarets were 600 and 500 year old, respectively. As shown in Figures 8a and 8b, their minarets collapsed at the bottom of the cylindrical body. On the other hand, the Oksuztekke minaret collapsed at its mid-height (Figure 8c). Oksuztekke mosque was constructed only six years before the 1999 earthquakes (Table 2).